Assessment Schedule - 2007

Statistics and Modelling: Calculate confidence intervals for population parameters (90642)

Evidence Statement

	Achievement Criteria	No	Evidence	Code	Judgement	Sufficiency
ACHIEVEMENT	Calculate confidence intervals for population parameters	1	752.7 \pm 2.6 or 750.1 < μ < 755.3	A	Accept any rounding of at least 2 sig fig. for all 3 intervals.	TWO of Code A
		2	4.6 ± 3.2 or $1.4 < \mu_1 - \mu_2 < 7.8$	A	Accept intervals written in equivalent forms.	
		3(a)	0.05 ± 0.033 or $0.017 < \pi < 0.083$	A	Ignore units.	
	Demonstrate an understanding of confidence intervals.	3(b)	Eg: There is a 90% chance that the interval contains the proportion of all bottles that are rejected. Eg: That if the sampling process was repeated a large number of times, 90% of such intervals would contain the proportion of all bottles that are rejected.	М	Or equivalent. Do not accept a statement that assigns a probability to the population proportion.	Achievement plus TWO of code M OR THREE of code M
MERIT		5	744.6 mL < μ < 749.8 mL Eg: Since 750 lies outside this interval we can conclude that the mean volume is different from 750 mL. Eg: Yes, because 750 lies outside this interval.	A M	Or equivalent – must have interval, conclusion and a correct reason. Accept any rounding of at least 2 sig fig. for intervals. Accept intervals written in equivalent forms. Accept variations in calculations that are due to rounding, but final answer must be rounded up. Ignore units.	

ENCE	Demonstrate an understanding of the theory behind confidence intervals.	6	$\operatorname{Var}\left[\overline{X}\right] = \operatorname{Var}\left[\frac{X_1 + \dots + X_n}{n}\right]$ $= \frac{1}{n^2} \left(\operatorname{Var}\left[X_1 + \dots + X_n\right]\right)$ $= \frac{1}{n^2} n \sigma^2$ $= \frac{\sigma^2}{n}$ So $\sigma_{\overline{X}} = \frac{\sigma}{\sqrt{n}}$	E	Must identify the need to square the constant and use expectation algebra logically.	Merit plus One of code E
EXCELLENCE		7	$z = \frac{750 - 752.5}{\frac{5.1}{\sqrt{30}}}$ $z = -2.685$		Must identify the need to use the distribution of sample means. Accept variations in rounding.	
			$P(\bar{x} < 750) = P(z < -2.685)$ $= 0.0036$	E		
		8	$\frac{1.96 \times \frac{\sigma}{\sqrt{n}}}{1.96 \times \frac{\sigma}{\sqrt{2n}}} = \sqrt{2} = 1.414$	M E	Accept variations in rounding.	

Judgement Statement

Achievement	Achievement with Merit	Achievement with Excellence
Calculate confidence intervals for population parameters.	Demonstrate an understanding of confidence intervals.	Demonstrate an understanding of the theory behind confidence intervals.
2 × A	Achievement plus 2 × M or 3 × M	Merit plus 1 × E

The following Mathematics specific marking conventions may also have been used when marking this paper:

- Errors are circled.
- Omissions are indicated by a caret (A).
- NS may have been used when there was not sufficient evidence to award a grade.
- CON may have been used to indicate 'consistency' where an answer is obtained using a prior, but incorrect answer and NC if the answer is not consistent with wrong working.
- CAO is used when the 'correct answer only' is given and the assessment schedule indicates that more evidence was required.
- # may be used when a correct answer is obtained but then further (unnecessary) working results in an incorrect final answer being offered.
- RAWW indicates right answer, wrong working.
- **R** for 'rounding error' and **PR** for 'premature rounding' resulting in a significant round-off error in the answer (if the question required evidence for rounding).
- U for incorrect or omitted units (if the question required evidence for units).
- MEI may have been used to indicate where a minor error has been made and ignored.